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Abstract. Large and complex data is challenging for most existing dis-
covery algorithms, for several reasons. First of all, such data leads to
enormous hypothesis spaces, making exhaustive search infeasible. Sec-
ond, many variants of essentially the same pattern exist, due to (nu-
meric) attributes of high cardinality, correlated attributes, and so on.
This causes top-k mining algorithms to return highly redundant result
sets, while ignoring many potentially interesting results.
These problems are particularly apparent with Subgroup Discovery and
its generalisation, Exceptional Model Mining. To address this, we intro-
duce subgroup set mining: one should not consider individual subgroups,
but sets of subgroups. We consider three degrees of redundancy, and
propose corresponding heuristic selection strategies in order to eliminate
redundancy. By incorporating these strategies in a beam search, the bal-
ance between exploration and exploitation is improved.
Experiments clearly show that the proposed methods result in much more
diverse subgroup sets than traditional Subgroup Discovery methods.

1 Introduction

In this paper, we assume that we are dealing with complex data. This complexity
can be due to several aspects of the data, e.g. datasets may contain many rows
as well as many attributes, and these attributes may be of high cardinality.
Such complex data is challenging for existing discovery algorithms, primarily
for reasons of computation time: all these aspects will have an impact on the
time required for mining the data. Especially where numeric data is concerned,
detailed analysis of the data will imply high cardinalities on such attributes, and
many candidate hypotheses will need to be tested. Also, complexity may reside in
the discovery task, for example when modelling non-trivial interactions between
attributes. The result of these challenges is that individual candidate testing
becomes very time-consuming, and hypothesis spaces become prohibitively large.

In the majority of discovery algorithms, including those for Subgroup Discov-
ery (SD) [6,17], it is assumed that complete solutions to a particular discovery
task are required, and thus some form of exhaustive search is employed. In order
to obtain efficiency, these algorithms typically rely on top-down search combined
with considerable pruning, exploiting either anti-monotonicity of the quality
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Fig. 1. Redundancy in top-k Subgroup Discovery. Shown are the covers (in black) of
the top-100 subgroups obtained on Credit-G with weighted relative accuracy.

measure (e.g. frequency), or so-called optimistic estimates of the maximally at-
tainable quality at every point in the search space [3]. With small datasets and
simple tasks, these tricks work well and give complete solutions in reasonable
time. However, on the complex datasets that we assume, exhaustive approaches
simply become infeasible, even when considerable pruning can be achieved. Ad-
ditionally, we consider Exceptional Model Mining (EMM) [11,10], which allows
multiple target attributes and complex models to be used for measuring quality.
With EMM in particular, we are often dealing with quality measures that are
not monotonic, and for which no optimistic estimates are available.

Apart from the computational concerns with discovery in large datasets, one
also needs to consider the practicality of complete solutions in terms of the
size of the output. Even when using condensed representations [13,14] or some
form of pattern set selection [1,7,15] as a post-processing step, the end result
may still be unrealistically large, and represent tiny details of the data overly
specifically. The experienced user of discovery algorithms will recognise the large
level of redundancy that is common in the final pattern set. This redundancy
is often the result of dependencies between the (non-target) attributes, which
lead to large numbers of variations of a particular finding. Note that large result
sets are problematic even in top-k approaches. Large result sets are obviously
not a problem in top-1 approaches, but they are when k ≥ 2, as the mentioned
dependencies will lead to the top of the pattern list being populated with different
variations on the same theme, and alternative patterns dropping out of the top-
k. This problem is aptly illustrated by Figure 1, which shows that the top-100
subgroups obtained on Credit-G cover almost exactly the same tuples.

Approach and contributions The obvious alternative to exhaustive search,
and the one we consider in this paper, is of course heuristic search: employ edu-
cated guesses to consider only that fraction of the search space that is likely to
contain the patterns of interest. When performing heuristic search, it is essential
to achieve a good balance between exploitation and exploration. In other words,
to focus and extend on promising areas in the search space, while leaving room
for several alternative lines of search. In this work, we will implement this bal-
ance by means of beam search, which provides a good mixture between parallel
search (exploration) and hill-climbing (exploitation). Within the beam search
framework, we will experiment with different variations of achieving diversity
in the beam, that is, the current list of candidates to be extended. Due to the
above-mentioned risk of redundancy with top-k selection, the level of exploration
within a beam can become limited, which will adversely affect the quality of the



end result. Inspiration for selecting a diverse collection of patterns for the beam
at each search level will come from pattern set selection techniques, which were
originally designed for post-processing the end-result of discovery algorithms.

In Section 2, we will first formalise both Subgroup Discovery and Exceptional
Model Mining, after which we will recap the commonly used search techniques,
including the standard beam search algorithm. We will then introduce the notion
of subgroup set mining in Section 3, and argue that it is better to mine subgroup
sets rather than individual subgroups, to ensure diversity. This leads to the Non-
Redundant Generalised Subgroup Discovery problem statement. We will show
that redundancy in subgroup sets can be formalised in (at least) three different
ways, each subsequent definition being more strict than its predecessor. Each of
these three degrees of redundancy is used as basic principle for a beam selection
strategy in Section 5. Section 4 presents the quality measures that will be used
in the experiments, which are presented in Section 6. We round up with related
work and conclusions in Sections 7 and 8.

2 Preliminaries

2.1 Subgroup Discovery and Exceptional Model Mining

We assume that the tuples to be analysed are described by a set of attributes A,
which consists of k description attributes D and l model (or target) attributes M
(k ≥ 1 and l ≥ 1). In other words, we assume a supervised setting, with at least
a single target attribute M1 (in the case of classical SD), but possibly multiple
attributes M1, . . . ,Ml (in the case of EMM). Each attribute Di (resp. Mi) has
a domain of possible values Dom(Di) (resp. Dom(Mi)). Our dataset S is now
a bag of tuples t over the set of attributes A = {D1, . . . , Dk,M1, . . . ,Ml}. We
use xD resp. xM to denote the projection of x onto its description resp. model
attributes, e.g. tD = πD(t) in case of a tuple, or SM = πM (S) in case of a bag
of tuples. Equivalently for individual attributes, e.g. SMi = πMi

(S).
Arguably the most important concept in this paper is the subgroup, which

consists of a description and corresponding cover. A subgroup (cover) is a bag of
tuples G ⊆ S and |G| denotes its size, also called subgroup size or coverage.

A subgroup description is an indicator function s, as a function of description
attributes D. That is, it is a function s : (Dom(D1)× . . .×Dom(Dk)) 7→ {0, 1},
and its corresponding subgroup cover is Gs = {t ∈ S | s(tD) = 1}. As is usual,
in this paper a subgroup description is a pattern, consisting of a conjunction of
conditions on the description attributes, e.g. Dx = true ∧ Dy ≤ 3.14. Such a
pattern implies an indicator function as just defined.

Given a subgroup G, we would like to know how interesting it is, looking
only at its model (or target) data GM . We quantify this with a quality measure.
A quality measure is a function ϕ : GM 7→ R that assigns a numeric value to a
subgroup GM ⊆ SM , with GM the set of all possible subsets of SM .

Subgroup Discovery and Exceptional Model Mining The above defini-
tions allow us to define the two main variations of data mining tasks that feature



in this paper: Subgroup Discovery (SD) and Exceptional Model Mining (EMM).
As mentioned, in SD we consider datasets where only a single model attribute
M1 (the target) exists. We are interested in finding the top-ranking subgroups
according to a quality measure ϕ that determines the level of interestingness in
terms of unusual distribution of the target attribute M1:

Problem 1 (Top-k Subgroup Discovery). Suppose we are given a dataset S with
l = 1, a quality measure ϕ and a number k. The task is to find the k top-ranking
subgroups Gk with respect to ϕ.

EMM is a generalisation of the well-known SD paradigm, where the single
target attribute is replaced by a collection of model attributes [11]. Just like in
SD, EMM is concerned with finding subgroups that show an unusual distribu-
tion of the model attributes. However, dependencies between these attributes
may occur, and it is therefore desirable to consider the joint distribution over
M1, . . . ,Ml. For this reason, modelling over GM is employed to compute a value
for ϕ. If the model induced on GM is substantially different from the model
induced on SM , quality is high and we call this an exceptional model. We can
now formally state the EMM problem.

Problem 2 (Top-k Exceptional Model Mining). Suppose we are given a dataset
S, a quality measure ϕ and a number k. The task is to find the k top-ranking
subgroups Gk with respect to ϕ.

2.2 Subgroup search

To find high-quality subgroups, the usual choice is a top-down search strategy.
The search space is traversed by starting with simple descriptions and refining
these along the way, from general to specific. For this a refinement operator
that specialises subgroup descriptions is needed. A minimum coverage threshold
(mincov) is used to ensure that a subgroup covers at least a certain number of
tuples. A maximum depth (maxdepth) parameter imposes a maximum on the
number of conditions a description may contain.

Exhaustive search When exhaustive search is possible, depth-first search is
commonly used. This is often the case with moderately sized nominal datasets
with a single target. Whenever possible, (anti-)monotone properties of the qual-
ity measure are used to prune parts of the search space. When this is not pos-
sible, so-called optimistic estimates can be used to restrict the search space. An
optimistic estimate function computes the highest possible quality that any re-
finement of a subgroup could give. If this upper bound is lower than the quality
of the current kth subgroup, this branch of the search space can be safely ignored.

Beam search When exhaustive search is not feasible, beam search is the widely
accepted heuristic alternative. It also uses a levelwise top-down strategy and the
same refinement operator, but it explores only part of the search space. The basic
algorithm is shown as Algorithm 1. On each level, the w highest ranking sub-
groups with respect to quality are selected for the beam. Candidate subgroups for



Algorithm 1 Beam Search

Input: A dataset S, a quality measure ϕ and parameters k, w, mincov and maxdepth.
Output: R, an approximation of the top-k subgroups Gk.
1. R← ∅, Beam← {∅}, depth = 1
2. while depth ≤ maxdepth do
3. Cands← ∅
4. for all b ∈ Beam do
5. Cands← Cands ∪ GenerateRefinements(b,mincov)
6. for all c ∈ Cands do
7. UpdateTopK(R, k, c, ϕ(c))
8. Beam← SelectBeam(Cands,w, ϕ)
9. depth← depth + 1

10. return R

the next level are generated from individual subgroups b using the refinement
operator (GenerateRefinements), while respecting the mincov parameter. The
initial candidate set is generated from the empty subgroup description. Select-
Beam selects the w highest ranking c ∈ Cands (with respect to ϕ) to form the
beam for the next level.

3 Non-redundant generalised Subgroup Discovery

The redundancy issues experienced with SD/EMM algorithms suggest that we
should not only look at each individual subgroup locally, but also take the other
subgroups into account. That is, we should consider subgroup set mining, similar
to recent pattern set selection approaches [1,7,15].

Problem 3 (Non-Redundant Generalised Subgroup Discovery). Suppose we are
given a dataset S, a quality measure ϕ and a number k. The task is to find a
non-redundant set G of k high-quality subgroups.

The term Generalised Subgroup Discovery is used to emphasise that it en-
compasses both SD and EMM.

Although it may be clear to the data miner whether a (small) set of patterns
contains redundancy or not, formalising redundancy is no trivial task. We can
consider three degrees of redundancy removal.

In a non-redundant subgroup set G, all pairs Gi, Gj ∈ G (with i 6= j) should
have substantially different:

1. subgroup descriptions, or
2. subgroup covers, or
3. exceptional models. (Only in the case of EMM.)

Note that each subsequent degree is more strict than its predecessor. On
the first, least restrictive degree, substantially different descriptions are allowed,
ignoring any potential similarity in the cover. The second degree of redundancy
would also address this kind of similarity in the subgroup covers. The third degree



of redundancy will consider subgroups that are different in both description and
cover, and will address their difference in terms of the associated models built
on the model attributes M .

In Section 5, each of the three degrees of redundancy will be used as basic
principle for a subgroup set selection method and be incorporated in the beam
search. The resulting search strategies eliminate redundancy in subgroup sets.

To quantify redundancy in subgroup sets, we consider the subgroup covers
because it is independent of any other choices and can be easily interpreted.
By assuming a uniform distribution of all subgroup covers over all tuples in
the dataset, we can compute an expected cover count and measure how far each
individual tuple’s cover count deviates from this. This results in the following.

Definition 1 (Cover Redundancy). Suppose we are given a dataset S and
a set of subgroups G. Define the cover count of a tuple t ∈ S as c(t,G) =∑

G∈G sG(t). The expected cover count ĉ of a random tuple t ∈ S is defined as

ĉ = 1
|S|

∑
t∈S c(t,G). The Cover Redundancy CR is now computed as:

CRS(G) =
1

|S|
∑
t∈S

|c(t,G)− ĉ|
ĉ

The larger the CR, the larger the deviation from the uniform distribution.
Because Generalised Subgroup Discovery aims to find only those parts of the
data that stand out, this measure on itself does not tell us much. However, if we
have several subgroup sets of (roughly) the same size and for the same dataset, a
lower CR indicates that less tuples are covered by more subgroups than expected,
and thus the subgroup set is more diverse/less redundant.

As an example, the subgroup set in Figure 1 has a CR of 1.19. Clearly, this
cover distribution is highly undesirable and (much) lower values are preferred.

4 Quality Measures

Weighted Relative Accuracy Weighted Relative Accuracy (WRAcc) [9] is a
well-known SD quality measure for datasets with one binary target attribute.
Let 1G (resp. 1S) denote the fraction of ones in the target attribute, within the
subgroup (resp. entire dataset). Weighted Relative Accuracy is then defined as

ϕWRAcc(G) = |G|
|S| (1

G − 1S).

Weighted Kullback-Leibler divergence We previously [10] introduced a
measure based on the Kullback-Leibler (KL) divergence. Each attribute-value
is assumed to be an independently drawn sample from an underlying random
variable. The empirical probability distribution for attribute Mi is estimated by
P̂ . We here present an alternative that weighs quality by subgroup size, because
this works better in combination with a levelwise search (without this weight,
smaller subgroups always tend to have larger qualities). This measure can be
used with either a single or multiple binary model attributes, and even with
nominal attributes.



Definition 2 (WKL quality). Given a database S and subgroup G, define
(independent) Weighted KL quality as

ϕWKL(GM ) =
|G|
|S|

l∑
i=1

KL(P̂ (GMi) ‖ P̂ (SMi))

Weighted Krimp Gain In [10] we introduced a second measure that, contrary
to (Weighted) KL quality, does take associations between (binary) attributes into
account. It uses Krimp code tables [16] as models, but the principle is equivalent
to that of WKL: a subgroup is interesting if it can be compressed much better
by its own compressor, than by the compressor induced on the overall database.
Similar to WKL quality, we here introduce a weighted alternative.

Definition 3 (Weighted Krimp Gain). Let D be a binary database, G ⊆ D
a subgroup, and CTD and CTG their respective optimal code tables. We define
the Weighted Krimp Gain of group G from D, denoted by WKG(G ‖ D), as

WKG(G ‖ D) = L(G | CTD)− L(G | CTG),

with L(G | CT ) the size of G, in bits, encoded with code table CT .

Given this, defining the quality measure is straightforward.

Definition 4 (WKG quality). Let S be a database and G ⊆ S a subgroup.
Define Weighted KG quality as ϕWKG(GM ) = WKG(GM ‖ SM ).

5 Non-redundant beam selection

In this section we show how selection strategies based on the three degrees
of redundancy from Section 3 can be incorporated in the basic beam search
algorithm (see Algorithm 1). Instead of simply choosing the –potentially highly
redundant– top-k subgroups for the beam, we will modify the algorithm to select
diverse subgroup sets at each level. In other words, we strive to achieve high-
quality yet non-redundant beam selection.

A beam selection strategy is a selection scheme that decides which candidates
are included in the beam, and is invoked by SelectBeam in Algorithm 1. We will
refer to regular top-k beam selection as the Standard strategy.

Most pattern set selection criteria require all possible pattern sets to be
taken into consideration to ensure that the global optimum is found. However,
large numbers of subgroups may be evaluated at each search level and such
exhaustive strategies are therefore infeasible. Hence, we have to resort to greedy
and heuristic methods, as is usual in pattern set selection [1,7,15]. The following
three selection strategies correspond to the three degrees of redundancy.

Description-based beam selection Order all candidates descending by qual-
ity and consider them one by one until beam width w is reached. For each



considered subgroup G ∈ Cands, discard it if its quality and all but 1 conditions
are equal to that of any b ∈ Beam, otherwise include it in the beam. Time
complexity for selecting the beam of a single level is O(|Cands| · log(|Cands|) +
|Cands| · depth) (the current search depth influences how long a comparison of
descriptions takes).

Cover-based beam selection This strategy focuses on the subgroup covers
and how they overlap. A score based on multiplicative weighted sequential cov-
ering [9] is used to weigh the quality of each subgroup, aiming to minimise the
overlap between the selected subgroups. This score is defined as

Ω(G,Beam) =
1

|G|
∑
t∈G

αc(t,Beam),

where α ∈ 〈0, 1] is the weight parameter. The less often tuples in subgroup G
are already covered by subgroups in the beam, the larger the score. If the cover
contains only previously uncovered tuples, Ω(G,Beam) = 1.

In w iterations, w subgroups are selected for inclusion in the beam. In each
iteration, the subgroup that maximises Ω(G,Beam) ·ϕ(G) is selected. The first
selected subgroup is always the one with the highest quality, since the beam is
empty and Ω(G,Beam) = 1 for all G. After that, the Ω-scores for the remaining
Cands are updated each iteration. Complexity per level is O(w · |Cands| · |S|).

Compression-based beam selection To be able to do model-based beam se-
lection, a (dis)similarity measure on models is required. For this purpose, we
focus on the models used by the WKL and WKG quality measures. These mea-
sures have in common that they rely on compression; they assume a coding
scheme and the induced models can therefore be regarded as compressors.

In case of WKG, the compressor is the code table induced by Krimp. In case
of WKL, the compressor replaces each attribute-value x by a code of optimal
length L(x) based on its marginal probability, i.e. L(x) = − log2(P̂ (Mi = x)).

Adopting the MDL philosophy [4], we say that the best set of compressors is
that set that together compresses the dataset best. Selecting a set of compressors
is equivalent to selecting a set of subgroups, since each subgroup has exactly one
corresponding compressor. Since exhaustive search is infeasible, we propose the
following heuristic.

1. We start with the ‘base’ compressor that is induced on the entire dataset,
denoted CS . Each t ∈ S is compressed with this compressor, resulting in
encoded size L(S | CS).

2. Next, we iteratively search for the subgroup that improves overall compres-
sion most, relative to the compression provided by the subgroups already
selected. That is, the first selected subgroup is always the top-ranked one,
since its compressor C1 gives the largest gain with respect to L(S | CS).

3. Each transaction is compressed by the last picked subgroup that covers it,
and by CS if it is not yet covered by any. So, after the first round, part of
the transactions are encoded by CS , others by C1.



4. Assuming this encoding scheme, select that subgroup G ∈ Cands\{C1, . . . }
that maximises L(S | CS , C1, . . . )−L(S | CS , C1, . . . , G) in each subsequent
step. Stop when the beam has attained its desired width w.

To perform this selection strategy, all compressors belonging to the subgroups
of a certain level are required. If these can be kept in memory, the complexity
of the selection scheme is O(w · |Cands| · |S| · |M |), where |M | is the number
of model attributes. However, keeping all compressors in memory may not be
possible. They could then be either cached on disk or reconstructed on demand,
but both approaches would severely impact runtimes.

Each subsequent beam selection strategy is more strict than its predeces-
sor, but also computationally more demanding. This offers the data miner the
opportunity to trade-off diversity with computation time.

5.1 Improving individual subgroups

Despite all efforts to prevent and eliminate redundancy in the result set, some
of the found subgroups may be overly specific. This may be caused by a large
search depth, but also by heuristic choices in e.g. the refinement operator. For
example, the subgroup corresponding to A = true ∧ B = true might have the
highest possible quality, but never be found since neither A = true nor B = true
has high quality. However, C = false ∧ A = true ∧ B = true could be found.
Now, pruning the first condition would give the best possible subgroup.

We propose to improve individual subgroups by pruning the subgroup de-
scriptions as a post-processing step, based on the concept of dominance. A sub-
group Gi dominates a subgroup Gj iff

1. the conditions of the description of Gi are a strict subset of those of Gj , and
2. the quality of Gi is higher than or equal to that of Gj , i.e. ϕ(Gi) ≥ ϕ(Gj).

Observe that although dominance is clearly inspired by relevancy [2], it is
not the same. The former is more generic, making it also suitable for e.g. EMM.

The heuristic method we propose for dominance-based pruning is to consider
each of the conditions in a subgroup description one by one, in the order in
which they were added. If removing a condition does not decrease the subgroup’s
quality, then permanently remove it, otherwise keep it.

5.2 Non-redundant beam search

The overall subgroup set mining process we propose consists of three steps. First,
a beam search (Algorithm 1) is performed to mine N subgroups, with any of
the proposed beam selection strategies (plugged in as SelectBeam). Next, each
of the N resulting subgroups is individually pruned based on dominance, and
syntactically equivalent subgroups are removed. As the final result set potentially
also suffers from the redundancy problems of top-k-selection, a selection strategy
is used to select S subgroups (S � N) from the remaining subgroups (‘post-
selection’). For this, the same strategy as during the beam search is used.



Refinements We distinguish three types of description attributes, each with
its own associated condition types: {=} for binary, {=, 6=} for nominal and
{<,>} for numeric attributes. For binary and nominal attributes, the refine-
ment operator always generates all possible refinements, i.e. each combination of
condition type and attribute-value. To prevent the search space from exploding,
the values of a numeric attribute are locally binned into 6 equal-sized bins and
{<,>}-conditions are generated for the 5 split points obtained this way. This ‘on-
the-fly’ discretisation, performed upon subgroup refinement, results in a much
more fine-grained binning than ‘a priori’ discretisation of numeric attributes.

Except for refinements that lead to a contradiction, all refinements for all de-
scription attributes are always considered. (Adding Dx = true to a description
that already contains Dx = false would be meaningless, for example.) Conse-
quently, multiple conditions on the same attribute can be imposed; especially
with nominal attributes, slowly peeling off tuples with 6= can be helpful.

6 Experiments

Table 1. Datasets. For each dataset the
number of tuples, the number of descrip-
tion and model attributes, and the minsup
used for WKG are given.

Dataset Properties WKG
|S| |D| |M | minsup

Adult-SD 48842 105 1 -
Credit-G 1000 20 1 -
Mushroom 8124 22 1 -

Adult-EMM 48842 6 99 10%
Emotions 593 72 6 1%
Mammals 2221 67 124 -
Yeast 2417 103 14 1%

Datasets To evaluate the proposed
methods, we perform experiments
on the datasets listed in Table 1.
The upper three datasets, taken
from the UCI repository3, contain
a single target (SD), the lower four
datasets have multiple model at-
tributes (EMM). Two variants of
the UCI Adult dataset are used:
Adult-SD is the commonly used
variant, with the binary class label
as single target, in Adult-EMM all
numeric attributes are considered
as description attributes, and all bi-
nary attributes as model attributes
(except for class, which is not used). Furthermore, we take the Emotions and
Yeast datasets from the ‘Mulan’ repository4, and we use the Mammals dataset [5]
(each of these has numeric description attributes and binary model attributes).

Methods for comparison Depth-first search (DFS) is used, with WRAcc in
combination with tight optimistic estimate [3]. With DFS, only a single condition
per attribute is allowed and all attributes are considered in a fixed order. This
is necessary to limit the size of the search space and thus computation time, but
also means that beam search can potentially reach better solutions.

An often adopted approach to mining pattern sets is the 2-step approach,
where 1) all patterns are mined and 2) a subset of these patterns is selected
as post-processing step. We test this approach by first using DFS or standard

3 http://archive.ics.uci.edu/ml/
4 http://mulan.sourceforge.net/datasets.html
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Fig. 2. Two beam selection strategies in action: description-based and cover-based. For
each level in the beam search, it is shown which candidate subgroups are selected for
inclusion in the beam (black) and which are ignored (white). Candidates are ordered
descending on quality. On the right, the total number of candidate subgroups for each
level is shown (candidates not shown are not selected). Credit-G with WRAcc.

beam search to mine the top-N subgroups, and then use cover-based selection
to select S subgroups from this (denoted ‘+PS’, for post-selection).

Search parameters In all experiments, N = 10, 000 subgroups are mined,
from which S = 100 are selected for the final subgroup set. A maximum depth
maxdepth = 5, minimum coverage mincov = 10, and beam width w = 100 are
used. Preliminary experiments showed that changing these parameters has the
same effect on all search strategies, keeping their differences intact. Since our aim
is to compare the different strategies, we keep these fixed. Weight parameter α for
cover-based beam selection is set to 0.9, since preliminary experiments indicated
that this gives a good balance between quality and cover diversity.

6.1 A characteristic experiment in detail

To study the effects of the proposed beam selection strategies and dominance-
based pruning in detail, we focus on a single dataset. For ease of presentation,
we choose the (relatively small) Credit-G dataset, and we use WRAcc as quality
measure. We choose a classical Subgroup Discovery setting because it is studied
and used by so many people, but this means that we cannot apply compression-
based selection. In Figure 1 we have already seen that redundancy is a tremen-
dous problem with DFS top-k subgroup discovery. Hence, we will now apply the
proposed beam selection strategies to see if this improves diversity.

Figure 2 shows which subgroups are selected for refinement on each level in
the beam search. Clearly, the description-based and cover-based strategies select
subgroups from a much wider range than the standard top-100, which is likely
to result in a more diverse beam. As expected, a higher degree of redundancy
elimination results in more (high-quality but similar) candidates being skipped.

Our hypothesis, of course, is that this more diverse beam selection also results
in a more diverse set of results. To assess this, consider the subgroup covers of
the 100 subgroups that are obtained after post-selection, in Figure 3. The plots
confirm that diversity increases as higher degree redundancy is eliminated: sub-
group covers become more and more scattered over all tuples, and CR decreases
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Fig. 3. Subgroup covers obtained with 4 beam search strategies: standard, standard
with cover-based post-selection, description-based, and cover-based. Shown are the
covers (in black) of the top-100 subgroups obtained on Credit-G with WRAcc. Cover
Redundancies (CR) computed from the subgroup sets are shown on the right.

with each new strategy (from top to bottom). Post-selection seems to perform
well at first with Standard+PS, but after choosing about 40 subgroups there are
no diverse and high-quality candidates left in the remaining 9,960 subgroups,
and homogeneity is the end result.

The goal we stated in Section 3 is to find a non-redundant set of high-quality
subgroups. It is therefore important that the maximum quality of a subgroup
set, the highest quality obtained by any subgroup, does not decrease when using
our beam selection strategies.

Maximum

Minimum
Average and standard deviation

DFS Standard Standard+PS Description Cover

Q
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y

Fig. 4. Qualities of 100 subgroups obtained
with different search strategies.

To assess this, consider the
qualities of the 100 subgroups
that are obtained after post-
selection, in Figure 4. The maxi-
mum obtained quality is (almost)
the same for all settings, indicat-
ing that exploitation does not suf-
fer from beam diversity; a good
result. The lower average qualities
and larger standard deviations are
natural consequences of the diver-
sity enforced by subgroup set se-
lection.



6.2 Quantitative results

We now present results obtained on a large set of experiments, to show that the
proposed beam selection strategies have a positive effect in the large majority of
cases. That is, resulting subgroup sets are more diverse (and thus less redundant),
while not giving in on maximum quality.

For the SD setting, we performed experiments with 3 datasets (Adult-SD,
Credit-G and Mushroom), quality measures WRAcc and WKL and 6 search
strategies. These were depth-first search with cover-based post-selection, beam
search with a standard beam with and without cover-based post-selection, and
beam search with the three proposed selection strategies. The compression-based
strategy does not work with WRAcc, and DFS with Adult-SD and WKL was ex-
cluded due to a very long runtime (> 2 weeks). Taking this into account, the
setup resulted in a total of 26 experiments.

Aggregated results obtained for these experiments are shown in Table 2.
A search strategy is better than others if it more often achieves 1) a higher
maximum quality, and 2) a lower cover redundancy. This is represented by the
average rank results. For each combination of dataset and quality measure, ex-
periments with all search strategies were performed and ranked with respect to
1) maximum quality obtained (ϕmax, descending), and 2) cover redundancy of
the attained subgroup set (CR, ascending). Tied ranks are assigned the aver-
age of the ranks for the range they cover. Finally, all ranks for a specific search
strategy are averaged.

The results in Table 2 show that DFS with cover-based post-selection needs
many candidates and considerable computation time to obtain subgroup sets
that are hardly diverse and do not attain the highest maximum quality. The
latter is partly due to the restrictions we had to impose on the hypothesis space;
multiple conditions on a single attribute (often beneficial) were banned.

The slightly higher average rankings (with respect to maximum quality) of
the description-based and cover-based strategies show that diverse beam selec-
tion has a modest positive impact on beam search’s capability of finding high-

Table 2. Subgroup Discovery results, aggregated over 3 datasets and 2 quality mea-
sures. Shown are the average number of candidates, time per experiment, subgroup
description sizes (#conditions), subgroup sizes and cover redundancies. On the right,
average ranks are given as obtained by ranking experiments stratified by strategy.

Search strategy Experiment avg Subgroup set avg Rank avg

|Cands| time (min) descr. size CR ϕmax CR

DFS + PS 403801872 1553 3.5 5712 1.10 3.4 3.8
Standard 88641 0.3 4.7 6535 1.23 3.2 4.0
Standard + PS 88641 4.2 3.6 7494 0.80 3.2 2.5
Description 88508 1.0 4.3 6591 0.98 2.8 3.7
Cover 89116 49 4.4 8758 0.37 2.8 1.0
Compression 87304 16 2.7 3296 1.12 3.3 3.0



Table 3. Exceptional Model Mining results, aggregated over 4 datasets and 2 quality
measures. Shown are the average number of candidates, time per experiment, subgroup
description sizes (#conditions), subgroup sizes and cover redundancies. On the right,
average ranks are given as obtained by ranking experiments stratified by strategy.

Search strategy Experiment avg Subgroup set avg Rank avg

|Cands| time (min) descr. size CR ϕmax CR

Standard 244830 8 4.8 4840 1.53 3.1 4.6
Standard + PS 244830 52 3.4 5397 1.07 2.6 2.5
Description 244659 49 3.8 5163 1.36 1.9 3.5
Cover 244830 62 3.4 5493 0.48 3.2 1.2
Compression 255992 143 2.1 653 1.07 3.8 2.4

quality solutions. A standard beam search with cover-based post-selection gives
more diverse results than the description-based strategy, but the latter is faster
and it is evidently more diverse than beam search without any post-processing.

When the cover-based strategy is incorporated within the search, however,
the results stand out with respect to cover diversity. The downside is that it needs
more time, but it is still very fast when compared to DFS. Compression-based
selection does not seem to work well in the SD setting, which is not unexpected
since only a very limited number of distributions can be distinguished with a
single binary model attribute.

We performed EMM experiments on 4 datasets (Adult-EMM, Emotions,
Mammals, and Yeast), with quality measures WKL and WKG and 5 beam search
strategies. WKG was not used in combination with Mammals, since the induc-
tion of Krimp code tables takes too long on this dataset; WKL is a good and
fast alternative. We chose to apply the combination of WKG and compression-
based selection only to Emotions, as all models can be cached in memory for
this dataset. The results of the 26 experiments are presented in Table 3.

The results for EMM are slightly different from those for SD. Description-
based selection finds better overall solutions than the other strategies. It performs
better than Standard in terms of cover redundancy, but not better than the 2-step
Standard+PS approach. For fast mining of high-quality results, the description-
based strategy seems a good choice. Dominance-based pruning is not applied
with Standard, resulting in lower maximum qualities than with Standard+PS.

As expected from its basic principle, cover-based selection is again the clear
winner with respect to cover diversity: it achieves the lowest cover redundancies.
The compression-based scheme gives slightly lower maximum qualities, but the
subgroups are quite diverse, smaller and have shorter descriptions.

We performed a Friedman test on 8 rankings obtained with the compression-
based quality measures, to be able to include the compression-based strategy in
the comparison. For each of the 7 datasets, a ranking was obtained with WKL,
1 ranking came from Emotions with WKG. Between the ϕmax rankings, no sig-
nificant differences were found; the 5 strategies exhibit no significant differences
with respect to exploitation. In the CR rankings, significant differences were



found (p-value = 0.00004), and we did a post-hoc Wilcoxon-Nemenyi-McDonald-
Thompson test. Standard+PS, Cover and Compression have significantly better
rankings than Standard, and Cover is also significantly better than Description.

All in all, incorporating subgroup selection within beam search yields clearly
better results than applying it as post-processing step. Employing the description-
based selection scheme comes at little computational cost, but does give higher-
quality and more diverse results than without using any subgroup selection tech-
niques. At the expense of some more computation time, cover-based selection
eliminates more redundancy and results in a much more diverse subgroup set.
The compression-based method does not always work well, but should be em-
ployed for datasets where many underlying distributions are present in the model
data, such as it is the case for e.g. Mammals.

Finally, we consider the effect of dominance-based pruning on the subgroup
sets. In the SD experiments, the average number of conditions per subgroup
description decreases from 4.5 to 3.4 and average subgroup quality increases
with 4% on average. For EMM, the effect is even larger and the average number
of conditions decreases from 4.9 to 3.0, an average decrease of 1.9 conditions
per description! Meanwhile, average subgroup quality increases with 20.3% on
average. Note that these changes are due to both the pruning of individual
descriptions and the removal of syntactically identical subgroups.

7 Related Work

To the best of our knowledge, we are the first to combine pattern selection tech-
niques and beam search to achieve non-redundant Generalised Subgroup Dis-
covery. Kocev et al. [8] previously proposed to incorporate similarity constraints
in a beam search to improve the induction of predictive clustering trees.

Several methods have been proposed to address the redundancy problem in
SD/EMM. Garriga et al. [2] proposed closed sets for labeled data, but similar to
closed frequent itemsets, this only eliminates a limited part of redundancy as only
individual patterns are considered. An advantage is that ‘relevant’ subgroups
can be efficiently mined [12]. A downside is that it does not apply to the EMM
setting. We previously proposed the EMDM algorithm [10], but this method
does not apply to the SD setting and for the EMM setting, it is dependent on
the initial candidates and it finds more complex subgroup descriptions.

The beam selection strategies we propose are clearly inspired by pattern set
selection methods such as those proposed by Bringmann & Zimmerman [1] and
Peng et al. [15]. The key difference is that we perform pattern selection within
a discovery algorithm to improve the end result.

8 Conclusions

Effective and efficient heuristics are crucial for performing discovery tasks in large
and complex data. In addition to that, the incredible amount of redundancy in
hypothesis spaces renders straightforward top-k mining useless. We address these



problems by incorporating heuristic pattern set selection methods within a beam
search, thereby improving the balance between exploration and exploitation.

We described three degrees of redundancy and introduced a subgroup set
selection strategy for each degree. Experiments with both Subgroup Discovery
and Exceptional Model Mining show that the proposed methods for subgroup
set mining return high-quality yet diverse results. The three methods offer the
data miner a trade-off between redundancy elimination and computation time.
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