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Abstract—Subgroup discovery systems are concerned with
finding interesting patterns in labeled data. How these systems
deal with numeric and nominal data has a large impact on the
quality of their results. In this paper, we consider two ways to
extend the standard pattern language of subgroup discovery:
using conditions that test for interval membership for numeric
attributes, and value set membership for nominal attributes.
We assume a greedy search setting, that is, iteratively refining
a given subgroup, with respect to a (convex) quality measure.
For numeric attributes, we propose an algorithm that finds the
optimal interval in linear (rather than quadratic) time, with
respect to the number of examples and split points. Similarly,
for nominal attributes, we show that finding the optimal set
of values can be achieved in linear (rather than exponential)
time, with respect to the number of examples and the size of
the domain of the attribute. These algorithms operate by only
considering subgroup refinements that lie on a convex hull in
ROC space, thus significantly narrowing down the search space.
We further provide efficient algorithms specifically for the
popular Weighted Relative Accuracy quality measure, taking
advantage of some of its properties. Our algorithms are shown
to perform well in practice, and furthermore provide additional
expressive power leading to higher-quality results.

Keywords-Subgroup discovery, numeric data, nominal data,
convex functions, ROC analysis

I. INTRODUCTION

Subgroup discovery is a descriptive local pattern mining
task that aims to find subsets of a given dataset where
the distribution of a binary target variable is substantially
different from its distribution in the whole data, measured by
a quality measure [1], [2]. Generally, subgroups are described
by conjunctions of conditions on the attributes of the dataset.

As an example, consider a dataset containing the 26
countries participating in the 2010 Winter Olympics [3].
Several attributes such as population or continent describe
the countries, and a binary target indicates whether a country
obtained more than ten medals, which holds in 38% of
the cases. In this dataset, the subgroup of countries where
a Germanic language is spoken, simply described by the
condition language family = Germanic, consists of ten
countries, 60% of which have a positive target value, making
this a rather interesting subgroup. The subgroup

language family = Germanic ∧ athletes ≥ 60

with a target share of 86% can be considered to be even
more interesting. Mature subgroup discovery systems find
this description by specializing or refining the more simple
subgroup with an additional condition. As in the above
example, usually conditions on nominal an numeric attributes
are expressed as equalities and inequalities, respectively.

An important aspect of a subgroup discovery system
is how it deals with numeric data. Most pattern mining
systems are based on exhaustive search and cannot directly
find patterns on numeric data; they require that a coarse-
grained discretization is determined in a pre-processing step.
Subgroup discovery systems, on the other hand, often operate
on numeric data directly. By performing discretization during
the search process, they may find patterns that pattern mining
systems are incapable of. However, as repeated discretization
is expensive, typically a heuristic approach is employed
within which the search only continues for the most promising
refinements. Efficiently considering a sufficiently wide range
of conditions is therefore important in these systems, to
ensure that interesting subgroups can still be found.

In this paper we propose an improvement of the state of the
art of greedy subgroup discovery, based on the observation
that a larger space of conditions allows for finding subgroups
of higher quality. It is crucial that these refinements can be
found efficiently, so as to ensure the overall feasibility of the
search even for large datasets. This improvement consists of
enriching the standard subgroup description pattern language
with two fundamental types of conditions: intervals for
continuous attributes, and value sets for nominal attributes.
Our main contribution is that we prove that under reasonable
assumptions, the best scoring such refinements can be found
without increasing the computational complexity of subgroup
discovery systems.

Interval conditions are of the form athletes ∈ [60, 100].
They allow us to focus directly on ranges of values of interest.
Such conditions are hard to find by traditional algorithms,
as they would need to find the conditions athletes ≥ 60 and
athletes ≤ 100 in two stages. Instead, we propose a new
efficient algorithm that can directly mine the best scoring
specialization of a subgroup over all possible intervals. The
straightforward approach to find an optimal interval involves
O(N + t2) calculations, where N is the number of examples



in the dataset, and t is the number of thresholds considered;
however, we show that an optimum can be found in O(N+t)
time, for any convex quality measure; hence, finding an
interval is not more expensive than finding an inequality
such as athletes ≥ 60 and is feasible even on large datasets.

Set-valued conditions are conditions of the form
language family ∈ {Turkic, Italic,Finno-Ugric}. It is
quite likely that using an individual language family does
not result in a subgroup of high quality, while a combination
does. As such, if we only consider single values of nominal
attributes, we miss out on some potentially useful subgroups.
To some extent this can be alleviated by imposing a hierarchy
on the attribute values, but such a hierarchy would have to
be specified by the user and still considerably restricts the
number of possible groupings. We can avoid such problems
by directly searching for an optimal subset of attribute values.
We present an algorithm to address this task, similar to
an algorithm by Breiman et al. [4], and prove that with a
straightforward optimization, it has linear time complexity.
To the best of our knowledge, this is a novel result.

From a theoretical perspective, the above algorithms can
be added to a subgroup discovery system without changing
its computational complexity. However, as the algorithms are
conceptually more involved, it may be harder to implement
them efficiently. We address this issue by showing that
simpler algorithms can be used for the Weighted Relative
Accuracy (WRAcc) measure, the most commonly used
quality measure in subgroup discovery.

While our focus in this paper is on extending the pattern
language in subgroup discovery, it should be noted that the
algorithms presented in this paper can also be used in other
contexts, such as rule learning or decision tree induction.

II. RELATED WORK

The subgroup discovery field, and more generally the
pattern mining field, is dominated by algorithms that are
restricted to discrete data. Typically, subgroup discovery
algorithms focus on nominal data, and thus require the pre-
processing of numeric data [5], [6], with the associated risk of
losing information. The subgroup discovery tool Cortana [7]
directly supports numeric attributes, although this is limited
to inequalities (rather than interval conditions). The search
in Cortana is heuristic, making the discovery of optimal
intervals by combining inequalities sub-optimal.

Grosskreutz and Rüping [8] propose an exhaustive algo-
rithm for mining top-k subgroups in numeric data. Their
approach returns the k globally best subgroups using interval
descriptions, for a family of quality measures that includes
WRAcc. The method is defined purely for numeric attributes,
rather than heterogeneous data. Search space pruning is
achieved by using a data structure that maintains for each
attribute an optimistic estimate for every interval; the size of
this data structure is thus quadratic in the number of split
points in the worst case. In contrast, the methods presented

in this paper focus on finding the optimal local refinement of
a given subgroup, and as such are meant to be embedded in a
greedy search strategy, which scales better for large numbers
of split points, albeit with the downside that the discovered
subgroups are not guaranteed to be globally optimal.

Fukuda et al. [9] present two algorithms for mining
association rules A ∈ [l, r] ⇒ C, for a fixed numeric
attribute A and consequent C, in the well-known support-
confidence framework, optimizing for one measure whilst
using a threshold for the other (in order to avoid trivial rules).
These algorithms have linear runtime as well, but are specific
to the support and confidence quality measures, and work in
a support-positive support space rather than in ROC space.

The topic of this paper is algorithmically closely related
to node splitting in decision tree induction [4]. However, the
goals of subgroup discovery and classification are distinct: a
classifier is a global predictive model, whereas a subgroup
is a local descriptive pattern. A good subgroup is therefore
not necessarily also a good classification rule or vice versa.
Many subgroup discovery quality measures are asymmetric,
considering only the subgroup itself, whereas a node split in
a decision tree takes into account the impurity of all its child
nodes. Moreover, the impurity of a single specialization
in a decision tree is typically measured against the class
distribution in the parent node, whereas a subgroup’s quality
is compared against the global target distribution. That being
said, from an algorithmic perspective many techniques are
readily transferrable between both areas.

A numeric attribute at a given node in a decision tree is
usually split into k child nodes, using k− 1 threshold values
(typically k = 2). This is slightly different from our context;
we use two thresholds (the interval endpoints), but the split is
binary, i.e., we separate data points within the interval from
those outside of it. It was shown by Elomaa and Rousu [10]
that for a convex impurity measure, a threshold in an optimal
k-way split never separates two adjacent base intervals with
an equal class distribution. The number of potential split
points can thus be reduced considerably, in linear time with
respect to the number of data points. This result is applicable
in our context as well. For k = 2, finding the optimal split
clearly takes linear time; for k ≥ 3, the optimal k-way split
can be found in quadratic time with respect to the number
of split points, using dynamic programming.

For nominal attributes, one can either perform a d-way
split on all possible values (where d is the domain size of
the attribute), or, as in our approach, one can search for the
optimal subset of values (and its complement), to split the
node into two child nodes. The algorithm we present here
is similar to the node splitting algorithm used by CART [4].
In this paper we provide an intuitive proof of its correctness
in ROC space. Our contribution lies in showing that a
straightforward optimization lowers the complexity of the
algorithm from O(N + d log d) to O(N + d).



III. PRELIMINARIES AND NOTATION

Throughout this paper, we assume a dataset D containing
elements ~x ∈ D of the form ~x = (a1, . . . , ak, c), where k is a
positive integer. We call ~a = (a1, . . . , ak) the attributes of ~x,
and c is called the target. The target is assumed to be binary,
and each attribute value ai is taken from a domain dom (Ai).
We consider binary, nominal, and numeric attributes, that
is, attributes for which, dom (A) = {0, 1}, |dom (A)| ∈ N0,
and dom (A) = R, respectively. The size of the dataset is
denoted by N = |D |. We write the positive part of the dataset
as D+ = {~x ∈ D | c = 1}, and its size as N+ = |D+|. Their
counterparts D− and N− are defined analogously.

For the definition of a subgroup we need to define
patterns. A pattern is a function p : A → {0, 1}, where
A =

∏k
i=1 dom (Ai). A pattern p is said to cover a data

point ~x if and only if p (~a) = 1. The patterns considered in
this paper are described as conjunctions of three types of
basic conditions on attributes:

1) equalities: A = a, where a ∈ dom (A) ,
2) intervals: A ∈ ]l, r], where l < r ∈ dom (A) , and
3) value sets: A ∈ V , where V ⊆ dom (A) .

Conditions 1 and 3 are applicable to binary and nominal
attributes, whereas condition 2 is applicable to numeric and
ordinal attributes.

Definition 1: A subgroup corresponding to a pattern p is
the bag of data points Gp ⊆ D that are covered by p:

Gp = {~x ∈ D | p(~a) = 1} .

If no confusion can arise, we omit the subscript p. We
write n = |G| for the size of G, and n+ and n− for the
number of positives and negatives in G, respectively. The
complement of a subgroup is written as G = D \G, and its
size as n =

∣∣G∣∣.
In order to objectively evaluate a candidate pattern in a

given dataset, we use a quality measure. For each pattern p
in the pattern language P , this is a function that measures
how interesting the induced subgroup Gp is.

Definition 2: Given a dataset D , a quality measure is a
function ϕD : P → R that assigns a numeric value to a
pattern p.
For convenience, we also write ϕD as a function of n+ and
n−, the number of positives and negatives in Gp, that is,
ϕD(p) = ϕD(n+, n−). Whenever the dataset D is clear from
the context, we omit the subscript.

Subgroup discovery is aimed at discovering patterns of
high quality. Typically this is done either with a top-k
approach or an interestingness constraint ϕ(p) ≥ ϕmin, and
a minimum support threshold n ≥ minsup that guarantees
the relative frequency of the subgroups in the dataset. Further
constraints may involve properties such as the complexity of
the pattern p. In most cases, a subgroup discovery algorithm
traverses a search lattice of candidate patterns in a top-
down, general-to-specific fashion. The structure of the lattice

is determined by a refinement operator ρ : P → 2P , a
syntactic operation which determines how simple patterns
can be extended into more complex ones by atomic additions.
In our application (and most others), the refinement operator
is assumed to be a specialization operator: ∀q ∈ ρ(p) : p � q
(p is more general than q).

Below we give the definitions of some commonly used
quality measures in subgroup discovery. For more measures
see, e.g., Fürnkranz and Flach [11].

Definition 3: Given a dataset D of size N and a pattern p,
let n = |Gp|, n+ = |Gp ∩D+|, and n− = n− n+. Further,
let n = N − n, n+ = N+ − n+, and n− = n− n+.
The Weighted Relative Accuracy of p is defined as

WRAccD(n+, n−) =
n

N

(
n+

n
− N+

N

)
.

The Binomial test [1] of p is defined as

BinD(n+, n−) =

√
n

N

(
n+

n
− N+

N

)
.

Weighted Relative Accuracy is one of the most used quality
measures in subgroup discovery [1], [2]. It strikes a balance
between the target divergence of the subgroup and its size.
WRAcc is also known under different names in other contexts
in data mining, for instance, leverage in association rule
mining, see Novak et al. [12]. The Binomial test is similar
in form to WRAcc, but is weighted by the square root of
the relative support of the subgroup. It can be shown to be
order equivalent to the standardized z-score.

We also consider the well-known Chi squared (χ2) and
Information Gain quality measures.

Definition 4: Let θ = N+/N . The χ2 measure is defined

χ2
D(n+, n−) =

(n+ − θn)2

θn
+

(n− − (1− θ)n)2

(1− θ)n

+

(
n+ − θn

)2
θn

+

(
n− − (1− θ)n

)2
(1− θ)n

.

The Information Gain measure is defined as

IGD(n+, n−) = h

(
N+

N

)
− n

N
h

(
n+

n

)
− n

N
h

(
n+

n

)
where h denotes entropy, which is defined as h(x) =
−x log x− (1− x) log(1− x).

A useful property for quality measures is convexity.
Definition 5: A function f : Rk → R is called convex, if

for any a, b ∈ Rk and λ ∈ [0, 1], it holds that

f (λa+ (1− λ)b) ≤ λf (a) + (1− λ)f (b) .

If −f is convex, f is called concave.
We assume that the quality measures we use are convex,

which is true for most common quality measures, including
WRAcc, χ2, and Information Gain. This can be seen by
verifying that their second derivatives are positive everywhere.



On the other hand, the Binomial test itself is neither convex
nor concave. However, if Bin(n+, n−) ≥ 0, that is, if
n+/n ≥ N+/N , it is order equivalent to the convex
measure Bin2(n+, n−). Typically, subgroups for which
Bin(n+, n−) < 0 are not of interest (otherwise we can,
for instance, invert the target). For our intents and purposes,
we can assume the Binomial test to be convex.

IV. CONVEX HULLS IN ROC SPACE

To get an intuitive insight into subgroups and their quality,
we will reason with them in coverage space, which is directly
related to ROC space [11]. For a dataset D with N+ positive
and N− negative examples, the corresponding coverage space
is the subset [0, N−] × [0, N+] of the plane, as shown in
Figure 1. The x-axis represents negative counts, and the
y-axis represents positive counts. A subgroup p with counts
n+ and n− is represented by the stamp point (n−, n+). An
important consideration is that all points in coverage space
have integer coordinates. In the following we will identify
subgroups with their corresponding points in coverage space.
Coverage space is trivially related to ROC space, since
the latter is simply a normalized version of the former,
rescaled to the unit square. In other words, the coordinates
of the aforementioned subgroup p in ROC space would be
(n−/N−, n+/N+). For ease of notation, in the following
we will mostly be working in coverage space.

For almost any sensible quality measure, it holds that
subgroups that are close to the diagonal are considered
uninteresting, since they have approximately the same target
distribution as the whole dataset; on the other hand, subgroups
closer to (0, N+) – or sometimes (N−, 0) as well – are of
high quality since their target distribution is very different.
For a given quality measure, we can plot its isometrics in
coverage space, as shown in Figure 1 for Information Gain.

Given a subset S of R2, its convex hull is defined as the
minimal superset of S such that if x1, x2 ∈ CH (S) and
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Figure 1: Example of a coverage space, with the isometrics
of Information Gain.
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Figure 2: The convex hull of a set of points in ROC space.

λ ∈ [0, 1], then it holds that

λx1 + (1− λ)x2 ∈ CH (S) .

If S is finite (say, a set of stamp points corresponding to a
collection of subgroups), it can be seen that CH (S) forms
a convex polygon, and thus can be uniquely identified by
its non-degenerate vertices, which we shall denote H(S). In
other words, H(S) consists of all points on the ‘edge’ of S.
In the remainder, we will call both CH (S) and H(S) the
convex hull of S; from the context it should be clear which
is meant. For a convex quality measure ϕ one can verify that

max {ϕ(s) | s ∈ S} = max {ϕ(s) | s ∈ H(S)} .

Hence, in order to find an optimal point, it suffices to evaluate
the members of the convex hull H(S), rather than all of S.

An example is given in Figure 2. We took the Age attribute
from the Adult dataset [13], and computed the stamp point
of every subgroup Age ∈ ]a, b]. Since the attribute under
consideration has a cardinality of 74, there are 2 775 possible
intervals to consider. However, since only points that lie on
the convex hull can maximize a convex quality measure, we
only need to consider a small fraction of all intervals. In this
example, the convex hull consists of a mere 56 points. If we
could directly find those intervals whose stamp points lie on
the convex hull, we could save ourselves a lot of effort.

The Graham scan algorithm [14] is one of several convex
hull algorithms. Given a set of points S in the plane, it
computes the convex hull H(S) in O(|S| log |S|) time, or in
O(|S|) time if S is given in a specific form. In our setting,
however, it is desirable to directly construct H(S), without
having to consider all points in S, and to do so in time closer
to O(|H(S)|) than to O(|S|).

To this end, it is useful to investigate just how large |H(S)|
can get. The following property is integral to the complexity
results presented below. It provides an upper bound on the
size of the convex hull of a set of points in coverage space.



Property 1: Given a finite set of points S in a coverage
space of size N−×N+, the number of vertices on the convex
hull H(S) is bounded by O(N

2/3).
Proof: The proof focusses on the upper left section H ′

of the convex hull; the proof for the three remaining parts
of H(S) is completely analogous. Let us denote the integer
coordinates of the non-degenerate vertices of H ′ as (xi, yi),
ordered by xi, and define (ui, vi) = (xi − xi−1, yi − yi−1),
where (x0, y0) = (0, 0). It holds that the slopes vi/ui
of the consecutive edges of H ′ are positive and strictly
decreasing. Consider the closely related set of fractions
{vi/(ui + vi)}i ⊂ [0, 1]. It was shown by Calders et al. [15]
that the size of a set of fractions in the unit interval with a
fixed denominator sum (i.e., the sum of all denominators in
the set) is maximized if the set forms a Farey sequence [16].
A Farey sequence of order k is defined as the ordered set

Fk =
{ a
b

∣∣∣ 0 < a ≤ b < k, gcd(a, b) = 1
}
.

Calders et al. further showed that asymptotically the size
of a Farey sequence |Fk| is O(q

2/3), where q =
∑
a/b∈Fk b.

Writing h = |H ′|, in our setting we have

q =

h∑
i=1

ui + vi =

h∑
i=1

xi − xi−1 + yi − yi−1

= xh + yh

≤ N− +N+ = N .

Hence, we find that |H(S)| ∈ O(N
2/3).

What the above property tells us, is that no matter how
many candidate stamps points (corresponding to subgroups)
there are, the number of convex hull points that we ultimately
need to consider depends only on the number of examples
in the dataset, and moreover, that this number of points is
sublinear in the number of examples.

This result, however, does not tell us how to consider only
those points. To efficiently compute convex hulls in ROC
space, we use the concept of a Minkowski sum.

Definition 6: The Minkowski sum of two sets A,B ⊆ Rk
is defined as

A⊕B = {a+ b | a ∈ A, b ∈ B} .

As an example, Figure 3 illustrates the Minkowski sum of
two convex polygons. The sum of the bottom left vertices of
A and B, for instance, is the bottom left vertex of A⊕B.

The following useful properties can be observed.
Property 2: For two finite sets A and B, it holds that

H(A ∪B) ⊆ H(A) ∪H(B) ,

CH (A⊕B) = CH (A)⊕ CH (B) ,

|H(A⊕B)| ≤ |H(A)|+ |H(B)| .

In the last case, equality holds if and only if all vertices are
non-degenerate.

(0, 0)

A

B

A⊕B

Figure 3: The Minkowski sum of two convex polygons.

Given two convex polygons in the plane, the convex hull of
their Minkowski sum is constructed as follows. Assuming the
vertices (and edges) of A and B are sorted, say, clockwise,
the corresponding edge lists are merged, sorted by their
slopes. In Figure 3, each edge of A⊕B corresponds to an
edge of either A or B. The sum H(A) ⊕ H(B) has one
degenerate hull point and hence H(A⊕B) contains six out
of a maximum of seven points.

V. ALGORITHMS

In this section we present two algorithms to find the
optimal refinement of a given subgroup, using intervals for
numeric attributes, and value sets for categorical attributes.
The basic idea is to directly construct the convex hull of a
set of points in ROC space, rather than checking all of them.

A. Intervals for Numeric Attributes

Our aim is to find a subgroup specialization of a given
pattern p of the form p∧A ∈ ]l, r], where l < r ∈ dom (A),
maximizing a convex quality measure ϕ.

We assume that the set of candidate interval endpoints
T = {ti}i is given as a parameter to the algorithm. These
endpoints can just consist of all distinct values occurring
in the data. Alternatively, they can be some smaller set
obtained through binning in a pre-processing step, or can
be manually specified by the user. We further assume that
these endpoints are sorted. For equal-width and equal-weight
binning, they can be obtained in linear time; if we use all
available data points, we can, e.g., sort the attribute once when
the data is read, and then reuse the order for each subgroup
specialization. As such, we will omit O(|T | log |T |) from
the complexity analysis below.
T induces a partitioning of dom (A) consisting of base

intervals ]ti, ti+1]. First of all, some of the endpoints can be
pruned beforehand. Event if T contains all possible endpoints,
for numeric attributes with low cardinality in the data (as well
as for ordinal attributes), it is quite likely that a single value
occurs multiple times with different target values. Following
Elomaa and Rousu [10], as a pre-processing step we can
remove any endpoint ti for which the adjacent base intervals
]ti−1, ti] and ]ti, ti+1] exhibit the same target distribution,



since these points will never participate in an optimal solution.
This pre-processing step takes linear time. In the worst case,
however, it may still hold that |T | ∈ O(N).

The BESTINTERVAL algorithm, given here as Algorithm 1,
constructs the convex hull of all interval stamp points in
ROC space. Let us write this set as

I = { ]t, t′] | t, t′ ∈ T, t < t′} .

First, note that an interval ]t, t′] can be written as the
difference of two half-intervals ]−∞, t′] and ]−∞, t]. To
obtain the convex hull of I , we will decompose I into disjoint
subsets, and compute the convex hulls of these subsets, using
Minkowski differences of sets of half-intervals. Note that
I itself cannot directly be written as a single Minkowski
difference of half-intervals due to the constraint t < t′.

For the purpose of exposition, assume |T | is a power of two.
Let T k denote the partition of the set { ]−∞, t] | t ∈ T}
into 2k equal-size bins, for k = 1, . . . , log |T | (where the
base of the logarithm is 2). Further, let us write T k` for the
`-th bin, for ` = 1, . . . , 2k. Then we define Ik` = T k2`	T k2`−1,
that is, (slightly abusing notation),

Ik` =
{
]t, t′] | t ∈ T k2`−1, t′ ∈ T k2`

}
,

where ` = 1, . . . , 2k−1. By construction it holds that t < t′.
We can now decompose I into disjoint subsets as

I =

log|T |⋃
k=1

2k−1⋃
`=1

Ik` .

Next we can compute the convex hull of all stamp points in
ROC space corresponding to the intervals in I . For ease of
notation, we identify these intervals with their stamp points.
Let us write H(T k` ) as Hk

` . Using Property 2 we obtain

H(I) ⊆
log|T |⋃
k=1

2k−1⋃
`=1

H(Ik` )

=

log|T |⋃
k=1

2k−1⋃
`=1

H(T k2` 	 T k2`−1)

=

log|T |⋃
k=1

2k−1⋃
`=1

H(Hk
2` 	Hk

2`−1) .

The BESTINTERVAL algorithm computes the convex hulls
of sets of half-intervals bottom-up. That is, we start with
the partition T log|T |, where each bin contains a single half-
interval (lines 6–7). Thus, it trivially holds that Hk

` = T k` for
k = log |T |. Then, for each subsequent k down to 1, using
Property 2 and the fact that T k` = T k+1

2`−1 ∪ T
k+1
2` , we can

compute Hk
` by combining Hk+1

2`−1 and Hk+1
2` (lines 16–17).

For each adjacent pair of convex hulls of half-intervals, the
convex hull of their Minkowski difference is computed to
obtain intervals (line 10), and for each of the intervals it is
checked whether it maximizes ϕ (lines 11–15).

Algorithm 1: BESTINTERVAL(p, A, T , ϕ)
input : subgroup description p, numeric attribute A,

sorted endpoints T , convex quality measure ϕ
output : interval ]l, r] with l, r ∈ T maximizing

ϕ(p ∧A ∈ ]l, r])
1 ]l, r]← ]−∞,∞]
2 ϕmax ← ϕ(p)
3 foreach ti in T do
4 compute n+i , n

−
i for p ∧A ∈ ]−∞, ti]

5 k ← log |T |
6 for ` = 1 to 2k do
7 Hk

` ← {]−∞, t`]}
8 while k ≥ 1 do
9 for ` = 1 to 2k−1 do

10 Ik` ← H(Hk
2` 	Hk

2`−1)
11 foreach ]ti, tj ] in Ik` do
12 ϕi,j ← ϕ(n+j − n

+
i , n

−
j − n

−
i )

13 if ϕi,j > ϕmax then
14 ϕmax ← ϕi,j
15 ]l, r]← ]ti, tj ]

16 for ` = 1 to 2k−1 do
17 Hk−1

` ← H(Hk
2` ∪Hk

2`−1)

18 k ← k − 1

19 return ]l, r]

The computational complexity of the algorithm is as
follows. The positive and negative counts for all half-intervals
]−∞, t] are obtained in O(N + |T |) time with a single scan
over that data (lines 3–4). Every Hk

` corresponds to a convex
polygon in ROC space. By construction, these polygons can
be stored in sorted order. As a result, the computations of
Ik` (line 10) and Hk−1

` (line 17) can be performed in linear
time. The computation of Ik` is linear in

∣∣Ik` ∣∣, since it is
computed as the Minkowski sum of two convex polygons.
The computation of Hk−1

` is linear in
∣∣Hk−1

`

∣∣, by applying
the Graham scan algorithm on the two sorted polygons [14].
Next, for a fixed k, note that since

∣∣T k` ∣∣ = N/2k, due to
Property 1 we have

∣∣Hk
`

∣∣ , ∣∣Ik` ∣∣ ∈ O((N/2k)
2/3). Summing

over ` = 1, . . . , 2k for a fixed k, we thus find we need

O(2k(N/2k)
2/3) = O(2

k/3N
2/3)

computations. Summing over all k = 1, . . . , log |T | we obtain

O(

log|T |∑
k=1

2
k/3N

2/3) = O(N
2/3 |T |1/3) .

Hence, the total time complexity of the algorithm is

O(N + |T |+N
2/3 |T |1/3) = O(N + |T |) .



Algorithm 2: BESTVALUESET(p, A, ϕ)
input : subgroup description p, nominal attribute A,

convex quality measure ϕ
output : value set V ⊆ dom (A) maximizing

ϕ(p ∧A ∈ V )
1 Vmax ← dom (A)
2 ϕmax ← ϕ(p)
3 foreach value v in dom (A) do
4 compute n+v , n

−
v for p ∧A = v

5 V←
⋃
n+
v /n

−
v

{{
v′ | n+v′/n

−
v′ = n+v /n

−
v

}}
6 V ′ ← ∅
7 (n+, n−)← (0, 0)
8 foreach V in V decreasing w.r.t. n+V /n

−
V do

9 V ′ ← V ′ ∪ V
10 (n+, n−)← (n+ + n+V , n

− + n−V )
11 if ϕ(n+, n−) > ϕmax then
12 Vmax ← V ′

13 ϕmax ← ϕ(n+, n−)

14 return Vmax

B. Value Sets for Nominal Attributes

Given a subgroup description p and a nominal attribute A,
we now consider the problem of finding the best refinement
p ∧A ∈ V , where V ⊆ dom (A), with respect to a convex
quality measure ϕ. Let d = |dom (A)| be the size of the
domain of A. The naive approach is to consider all O(2d)
subsets of dom (A), which is clearly infeasible even for
relatively small domains.

Let us consider the stamp points of all p ∧ A ∈ V in
coverage space. Since ϕ is convex, we know that the subset
V maximizing ϕ lies on the convex hull of these points. The
BESTVALUESET algorithm, given as Algorithm 2, makes use
of the fact that all values v ∈ dom (A) are mutually exclusive.
Hence, the stamp point of any value set V ⊆ dom (A) can be
written as the sum of the stamp points of the individual values
v ∈ V . As a result, constructing the convex hull is easy:
we compute the positive/negative ratio for each individual
value, and then incrementally construct the hull by adding
the values one by one in decreasing order with respect to
this ratio. For each intermediate value set we compute the
quality of the corresponding subgroup, and in the end the
best one is reported.

Note that this only constructs the upper part of the convex
hull; the lower part is analogously formed by considering
values in increasing order. The upper hull thus forms a chain,
and the lower hull consists of the upper hull’s complements.

The BESTVALUESET algorithm is similar to the value set
splitting algorithm used in CART by Breiman et al. [4], who
provided a correctness proof based on the convexity of the
quality measure. In the ROC space setting, since the algorithm
constructs the convex hull greedily, it is conceivable that its

∅

Vα

Vβ \ V

V \ Vα

V

Vβ \ Vα

Vβ

Figure 4: Illustration of the proof of correctness for the
BESTVALUESET algorithm. In this example |dom (A)| = 3.

solution is suboptimal, i.e., that the constructed hull in fact
does not contain all points. Here we present an intuitive
geometric proof of correctness in coverage space.

Property 3: The BESTVALUESET algorithm computes
argmaxV⊆dom(A) ϕ(p ∧A ∈ V ).

Proof: For any i = 0, . . . , d, let Vi be the i-th set con-
structed by the algorithm. It is easy to see that by construction
the sequence V0, . . . , Vd is convex. Take any V ⊆ dom (A).
We will prove that V is either an element of the constructed
(upper) hull, or that it lies below it. Consider the sets
Vα = maxi {Vi | Vi ⊆ V } and Vβ = mini {Vi | V ⊆ Vi}.
It holds that Vα ⊆ V ⊆ Vβ . Now, we subtract Vα from each
set. If V \ Vα = ∅, then V trivially lies on the constructed
hull. Otherwise, it holds that for any v in V \ Vα, there is
a v′ in Vβ \ V such that n+v /n

−
v ≤ n+v′/n

−
v′ , and vice versa.

Hence ∑
v∈V \Vα n

+
v∑

v∈V \Vα n
−
v
≤
∑
v′∈Vβ\V n

+
v′∑

v′∈Vβ\V n
−
v′
.

Since (V \ Vα) ∩ (Vβ \ V ) = ∅, the points in coverage
space corresponding to the sets ∅, V \ Vα, Vβ \ V , and
(V \ Vα) ∪ (Vβ \ V ) = Vβ \ Vα define a parallelogram
(see Figure 4). It follows from the inequality above that
V \ Vα lies under the line segment between ∅ and Vβ \ Vα.
If we now translate these points by Vα again, we find that
V = (V \Vα)∪Vα must lie under the line segment between
Vα = ∅ ∪ Vα and Vβ = (Vβ \ Vα) ∪ Vα. Since both of these
points lie on the hull constructed by the algorithm, and this
hull is convex, V must lie under this hull as well.

We further point out that a straightforward optimization can
be applied, by noting that we do not need to check degenerate
points on the convex hull. Thus, rather than checking all
values v individually, we can group all v having the same
ratio n+v /n

−
v (line 5). For large d, it is quite likely that several

values have the same ratio, and hence this can reduce the
number of evaluations (lines 8–13).

It is not difficult to see that without grouping, due to the
sorting step the computational complexity of the algorithm is
O(N + d log d). We now show that using this optimization,



the time complexity is reduced. The basic idea is that even for
large d (i.e., close to N ), sorting is bounded by O(N). A sort-
ing algorithm that properly deals with duplicates takes O(η)
time per entry on average, where η is the entropy of its input
data [17]. Consider the set ρ = {n+v /n−v | v ∈ dom (A)}
of all distinct ratios, and the distribution µ over ρ, defined
as µ(r) = |{v | n+v /n−v = r}| /d for r ∈ ρ. We will show
that d · η ∈ O(N), where η = −

∑
r µ(r) logµ(r). Let

δ = |ρ| ≤ d, and write a = d/δ. Now, η is maximized
if µ is uniform, i.e., if µ(r) = 1/δ for all ratios r, and
there are a values for each distinct ratio. In the worst case,
δ ∈ O

(
(N/a)

2/3
)
. As such, we find d · η ≤ d · log δ ∈

O(a(N/a)
2/3 log(N/a)

2/3) = O(N). Hence, the total time
complexity of the algorithm is O(N + d).

VI. ALGORITHMS FOR WEIGHTED RELATIVE ACCURACY

In this section we provide two algorithms specifically
tailored to Weighted Relative Accuracy, one of the most
popular quality measures in subgroup discovery. Although
these algorithms have the same asymptotic complexity as
those in the previous section, we include them here since
they are elegant and simple, faster in practice, and because
they provide some insight into WRAcc.

The algorithms make use of the additivity of WRAcc.
Property 4: WRAcc is an additive function, i.e., given

two patterns p1 and p2 with Gp1 ∩Gp2 = ∅, it holds that

WRAcc(p1 ∨ p2) = WRAcc(p1) +WRAcc(p2) .

Proof: Denote ni = |Gpi |, n+i =
∣∣G+

pi

∣∣ for i = 1, 2.
Since p1 and p2 are disjoint, we know that |Gp1∨p2 | =
n1 + n2, and

∣∣G+
p1∨p2

∣∣ = n+1 + n+2 . Hence

WRAcc(p1 ∨ p2) =
n1 + n2
N

(
n+1 + n+2
n1 + n2

− N+

N

)
=
n+1 + n+2

N
− (n1 + n2)

N+

N2

=
n1
N

(
n+1
n1
− N+

N

)
+
n2
N

(
n+2
n2
− N+

N

)
= WRAcc(p1) +WRAcc(p2)

A. Intervals for Numeric Attributes

Algorithm 3 finds the optimal interval specialization of a
subgroup p, with respect to WRAcc. It has the same linear
time complexity as Algorithm 1, but is conceptually simpler
and can be performed in a single pass over the data.

The algorithm iterates over the endpoints (line 5), main-
taining the best interval encountered so far. Assume that at
endpoint t we have two intervals ]t1, t] and ]t2, t], such that
the former has a higher quality. Then the following property
states that for any future extensions ]t1, t

′] and ]t2, t
′], where

t′ > t, their relative difference in quality remains the same,
even though their qualities might change.

Algorithm 3: BESTINTERVALWRACC(p, A, T )
input : subgroup description p, numeric attribute A,

sorted set of endpoints T
output : interval ]l, r] with l, r ∈ T maximizing

WRAcc(p ∧A ∈ ]l, r])
1 ]l, r]← ]−∞,+∞]
2 WRAccmax ←WRAcc(p)
3 hmax ← −∞
4 tmax ← −∞
5 foreach ti in T in increasing order do
6 compute n+i−1, n

−
i−1 for p ∧A ∈ ]ti−1,∞[

7 h←WRAcc(n+i−1, n
−
i−1)

8 if h > hmax then
9 hmax ← h

10 tmax ← ti−1

11 if WRAcc(p ∧A ∈ ]tmax, ti]) >WRAccmax then
12 ]l, r]← ]tmax, ti]
13 WRAccmax ←WRAcc(p ∧A ∈ ]tmax, ti])

14 return ]l, r]

Property 5: For any interval endpoints t1, t2, t, t′ such that
t1, t2 < t < t′, it holds that

WRAcc(p ∧A ∈ ]t1, t]) >WRAcc(p ∧A ∈ ]t2, t])
m

WRAcc(p ∧A ∈ ]t1, t′]) >WRAcc(p ∧A ∈ ]t2, t′]) .

Proof: Follows directly from Property 4 and the fact
that ]ti, t′] = ]ti, t]∪ ]t, t′].

Therefore, at each endpoint ti only one candidate interval
needs to be maintained. Every time a new right endpoint ti
is considered, a new left endpoint ti−1 is available, which
is checked on lines 6–10. To be able to compare candidate
intervals for different right hand sides, we use the quality of
their maximal extension, i.e., ]ti−1,∞[.

B. Value Sets for Nominal Attributes

Algorithm 4 is a simplification of Algorithm 2 for Weighted
Relative Accuracy. Using the additivity of WRAcc, the
following property shows that adding a value v with a positive
WRAcc to a value set V , increases the total quality.

Algorithm 4: BESTVALUESETWRACC(p, A)
input : subgroup description p, nominal attribute A
output : value set V ⊆ dom (A) maximizing

WRAcc(p ∧A ∈ V )
1 foreach value v in dom (A) do
2 compute n+v , n

−
v for p ∧A = v

3 Vmax ← {v ∈ dom (A) | n+v /n−v ≥ N+/N}
4 return Vmax



Property 6: Let V ⊆ dom (A) and v ∈ dom (A) with
v /∈ V , let p be a pattern. If WRAcc(p ∧A = v) ≥ 0 then

WRAcc(p ∧A ∈ V ∪ {v}) ≥WRAcc(p ∧A ∈ V ) .

Equality holds if and only if WRAcc(p ∧A = v) = 0.
Proof: Follows directly from Property 4.

Therefore, it is not necessary to construct and check the
entire convex hull. Instead, we can directly construct the
optimum: the value set that maximizes WRAcc is the union
of all attribute values with non-negative WRAcc. The time
complexity of Algorithm 4 is therefore O(N + d).

VII. EXPERIMENTAL EVALUATION

In this section we demonstrate the efficiency of the algo-
rithms, and furthermore show that using richer descriptions
results in subgroups of higher quality.

Table I presents the characteristics of the datasets we used.
We created three synthetic datasets and used three benchmark
datasets from the UCI Machine Learning repository [13].
The Random dataset consists of one numeric attribute that is
independent of the target concept c, with Pr(c = 1) = 0.5.
The numeric attribute in the Noisy interval dataset contains
an interval where the target is 1 inside and 0 outside, with
10% random noise added everywhere. The Farey dataset
corresponds to the worst case convex hull. For each type of
synthetic dataset we generated instances with sizes ranging
from 104 to 107. From the UCI ML Repository we used the
Adult, CMC, and Mushroom datasets. The last column of
Table I shows which class was taken as the positive class,
the other class(es) were taken as the negative class.

Table I: Main characteristics of the datasets used in the
experiments. Shown are the number of records N , the number
of nominal and numeric attributes, and the positive class.

attributes

Dataset # records nominal numeric positive class

Random 104–107 0 1 c = 1
Noisy interval 104–107 0 1 c = 1
Farey 104–107 0 1 c = 1

Adult 48 842 8 6 income > 50k
CMC 1 473 7 2 method 1
Mushroom 8 124 22 0 poisonous

We implemented the algorithms in the open-source Sub-
group Discovery tool Cortana [7].1 All experiments were
executed on a system with a 2.4GHz dual quad core processor
and 24GB of memory, running Linux. For the synthetic
datasets, the minimum support threshold was set to 1. For
each benchmark dataset, a minimum support of 10% and
maximum refinement depth of 3 were used, the search
strategy was beam search with a beam width of 100.

1http://datamining.liacs.nl/cortana.html

Table II: Average score of the top 10 discovered subgroups
using either standard descriptions (equalities and inequalities),
value sets, intervals, or both, for various quality measures,
with minsup=10%, search depth=3, and beam width=100.

Dataset Description WRAcc Bin χ2 IG

Adult Standard 0.0948 0.1419 9 734.14 0.1426
Value sets 0.0967 0.1523 10 443.94 0.1619
Intervals 0.1010 0.1799 11 640.52 0.1727
Both 0.1020 0.1727 10 639.03 0.1665

CMC Standard 0.0421 0.0466 65.82 0.0329
Value sets 0.0486 0.0929 77.60 0.0381
Intervals 0.0504 0.0519 176.74 0.0782
Both 0.0506 0.1090 179.45 0.0810

Mushroom Standard 0.1910 0.2889 4 842.42 0.5067
Value sets 0.2282 0.3130 6 161.40 0.7101

A. Performance

Figure 5 shows the results of performance experiments with
the BESTINTERVAL and BESTINTERVALWRACC algorithms
on the synthetic datasets. For the former, we plot the number
of subgroup evaluations and the runtime expressed in seconds
(excluding reading the file) as a function of the number of
records in the datasets, for the latter the runtime is plotted.
Runtimes were averaged over ten runs per dataset and size.
All values occurring in the data were used as split points.
In the BESTINTERVAL algorithm we used Information Gain,
but the choice of quality measure does not affect the number
of evaluations, and should not have a significant impact
on runtime. First, note that the algorithm can handle a
million records in just a few seconds, and for the largest
datasets takes less than a minute. Figures 5a and 5b show
that for Random and Noisy interval both the number of
evaluations and runtime scale linearly with respect to dataset
size. For Farey (Figure 5c), the number of evaluations scales
sublinearly with respect to dataset size, since the number of
possible split points grows sublinearly for Farey sequences
(Property 1). Runtime also seems to be roughly linear, though
it behaves a bit more erratically. The BESTINTERVALWRACC
algorithm performs very well on all three datasets, scaling
linearly in the dataset size, and requiring less than ten seconds
to find the optimal interval even for the largest datasets.

B. Quality

Table II contains the results of qualitative experiments on
the benchmark datasets. We compared the average quality of
the top 10 subgroups, using different types of descriptions:
standard (equalities and inequalities), value sets instead of
single values, intervals instead of inequalities, and both. As
the table shows, using intervals or value sets as descriptions
increases the average quality of the discovered subgroups.
Using both types of descriptions increases quality as well.
Only for the Adult dataset does the combination not always
yield the best overall results, however, this can be attributed
to the heuristic search process.

http://datamining.liacs.nl/cortana.html
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Figure 5: Execution times and number of evaluations of the BESTINTERVAL algorithm, and the execution times of the
BESTINTERVALWRACC algorithm, as a function of the number of records.

VIII. CONCLUSIONS AND FUTURE WORK

We presented efficient linear-time algorithms for mining
optimal subgroup refinements with respect to a convex quality
measure, having descriptions in the form of intervals for
numeric attributes, and value sets for nominal attributes.
By directly constructing the convex hull of the set of all
subgroup stamp points in coverage space, we can disregard
vast portions of the search space; the observation that the size
of this convex hull is sublinear in the number of examples,
entails linear time complexity. Experiments demonstrated that
as such, even for large datasets we can efficiently discover
high quality subgroups with rich descriptions.

Directions for future work include methods for different
types of descriptions, and the extension to more complex
targets. Depending on the quality measure, the latter may
increase the dimensionality of coverage space, resulting in
higher computational complexity.
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